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CRACK ZONE AND CRACK FRONT IN AN ELASTIC BODY UNDER PRESSURE

V. P. Koryavov

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 87-95, 1965

In [1] a description was given of the crack zone and crack front in a
brittle elastic body under high pressure at the wall of a cavity inside
the body. In the present paper, this description is analyzed and an
approximate solution of the problem of the propagation of the crack
front and the motion of the medium is proposed.

§1. The equation of spherically symmetric motion
of an elastic medium has the form

(1.1)

o ds, 2 (6, — Gg)
o
Here r and t are the coordinate and time, respec-
tively, u is the displacement of a particle of the
material, p is density, and o, and oy are the radial
and azimuthal stresses, respectively. For spherically
symmetric motion of a medium in which azimuthal
stresses are absent‘due to the presence of radial
cracks, the equation of motion has the form
&y 0s, £9 S, (1.2)
P =3 T g
From equations (1.1 and 1.2), with the aid of
Hooke's law, we correspondingly obtain

1 P P , 2(0u  u _ E(d—g)
s = Trla —7) C—parancm @)

> (1.4}
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where o is Poisson's ratio, and E is Young's modulus.
The general solution of equation (1.3) has the form

u = i(m>, ‘P1:1P1<t—,:;l),

T ar\ &

o=t + 50, (1.5)
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where ¥, and ¥, are arbitrary functions, and r; is the
initial radius of the cavity, which we introduce for
convenience in the following analysis. The solution of
equation (1.4) is as follows:

=£$f_2, f1=f1(t—ﬂ),

u o

fe=h(t +157). (L.6)
where fi and f; are arbitrary functions which, like ¥;
and ¥,, are found from the boundary conditions. For
a continuous elastic medium
_ ou . E [(1 —a) Y+ 25“09]
= o = T AT —2%)
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For the radial crack zone

S, o= E2 (1.8)

vV =
As in [1], we examine the following problem. Ata
certain moment of time, on a sphere of radius rj
within a solid body, a pressure is initiated that gener-
ates a spherical elastic wave. The tensile stresses
created in this wave lead to the formation of a radial
crack zone in which azimuthal stresses are absent.
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The dividing line between zones is called the crack
front. Since the elastic wave moves in an unperturbed
medium at rest, it will be a wave traveling in one
direction and described by one function ¥;. To deter-
mine the form of this function, it is sufficient to have
a single condition at one boundary, for example, at
the cavity wall or the crack front. The motion in the
crack region which extends over the perturbed zone
is described by the functions f; and f;, whose deter-
mination requires conditions at two boundaries: the
cavity and the crack front. In [1], a system of equa-
tions was given in which the reflected wave (function
f2) was neglected on the basis of conditions that were
not explicitly formulated. In this case, the system
becomes overdetermined. This approximate approach
will be treated in more detail at the end of the paper.

We write the conditions of conservation of mass
and momentum at the crack front

P2 (v, — R)) =p, (v, — R,
1.9)
P2 (v — R)? — 0y = p; (v, — R)Y2— 0,y

where R’ is the velocity of the front, p,, v, and oy,
are the density, mass flow rate, and radial stress in
the elastic zone ahead of the crack front, and p,, v,,
and oy, are the corresponding quantities behind the
front in the crack zone. For the density (in the case of
spherical symmetry) we havethe following expression:
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where p, is the initial density of the medium, In cor-
respondence with the concepts of [1], in the crack
zone 0, = 0, and at the crack front o, = gg, (critical).

In elasticity, due to the small displacement of the
cavity, the boundary condition is usually referred to
the initial radius of the cavity, while the pressure at
the wall is always taken as independent of the motion
in the elastic medium. Such an approximation may,
naturally, require adjustments associated with the
consideration of the displacement of the boundary orthe
consideration of the motionof the gas inside the cavity,
since it is possible that an abrupt rupture of the elastic
medium may lead to the formation of a wave directed
toward the center of the cavity, which in its turn may
lead to an increase in pressure at the boundary with
the elastic medium. The problem becomes more
complicated when the medium ceases to be elastic.

We will examine in more detail the possible types
of discontinuities at the crack front in the approxima-
tion ordinarily used for elasticity. The pressure p(t)
is given at the cavity wall. At the moment tx at which
the crack front forms, the pressure remains continu-
ous. Figure 1 gives a schematic representation of the
wall, the crack front (), and the characteristic (x),
the origin of which is in the point at which the crack
front forms. In [1] it was assumed that oy 4 i8 reached
at the cavity wall, and then remains unchanged at the
crack front, This corresponds to the assumption that
04 is continuous at the characteristic. It should be
noted here that a more general, though still relatively
simple, assumption would be that at the characteristic
gy has a discontinuity, i. e., theformation ofthe crack
front takes place at a certain o, say larger than that
which subsequently exists at the crack front. In our
case it is also natural to assume continuity of dis-
placement across the characteristic. From these two
assumptions, since at both sides of the characteristic
(points 1 and 2 in Fig. 1)

(1—2) v '
(1———6) T

Gy 5 'lP"

ey (1.11)

it follows that ¥** is also continuous at the character-
istic. Then, since at both sides of the characteristic

]

___’_s‘l’ -

pc? i

2(1—206) u

u=n =, (1.12)

it follows that ¢ is also continuous at the character-
istic. From the condition of mass and momentum con-
servation at the characteristic, it follows that v, ¥,
and ¥ are also continuous at the characteristic. In
virtue of the continuity of pressure at the cavity wall
(at points 1 and 3, sincethepoints 1,2, and 3 represent
one physical point), ¢, is continuous at the crack front
(points 2 and 3 in Fig. 1). From (1.9) and (1.10) it can
be seen that the continuity of 0, leads either to the

condition

254, .
vy =vs=R", - L":ﬂ’__—E—*,

1 on o (1.13)
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in which case, however, a crack front does not form
because it moves together with the cavity boundary,
or to the condition

Uy =0y, P1 = Pg, (1.14)

i. e., the continuity of all functions at the crack front.
It follows from (1.10), however, that this condition
can be precisely satisfied only for oy, = 0. Without
analyzing this situation more closely, we will examine
the case og, = 0. This case is doubtless of practical
significance, since numerous fissured materials do
not exhibit tensile strength in practice, while for
numerous materials 0g, < E, which is precisely the
requirement for p; = p,.

§2. The condition og, = 0 and the continuity of the
radial stress at the crack front lead to the relations

Srop_ 4 AV N W it T
—g R= T—29) 7“?(?'}'3—2)" < = - 13 ’
R—rg R—ry
p=b(t—5), A=A—TT), @D
| R—ry
fe=rit + — > )
where R is the radius of the crack front.
The condition of velocity continuity at the front
yields
R=Y 4 ¥y g 2.2)

The condition at the cavity boundary (r = ry) for the
crack region has the form

fro"— f20" — fao 4 fotte fm—l—fzo — p()

oL,
Coro E

(2.3)

Fro=F1(t), fao = f2 (&), fr = f1" (£), Fao' = J2' (£).

It is readily shown that the condition of continuity
of displacements at the front

hth=YX+3 (2.4)

does not introduce any thing new. We differentiate
(2.4) along R(t):

L=
=(%+%)(1~’%>-—i3-

or

—REGE (4 )

Making use of the relation derived from the con-
dition gy, =0 and (2.4), we obtain

g ) -

(2.5)
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— i —f f1+f2__i %A (2.5)
R[ T <GH + )] (Cont'd)
It can be seen that (2.5) and (2.1) lead directly to

(2.2), while (2.5) and (2.2) lead to the last term of

(2.1)—continuity of stress.

Hence, for the four unknown functions R,¥, fi, and
f> we have the four equations

S W_ W % fi—fr (1—9) (itfy
T=2) & ¢B 'R = ’

¢y s R

— fao’ + f1o +fm

CoTo

—15"{-%:/‘1"]“](2., = %‘ (2.6)
The initial conditions atthepoint R = vy, t = ty, and
the point itself, are found from the known motion that
precedes the formation of the crack zone. The solution
for the spherically symmetric motion of an elastic
medium for a given law governing the pressure vari-
ation at the wall of a spherical cavity has the form

V(7)) = p:;] Vi;c) e % (J; sin Bt — J, cos Br),

Y (1) = = e-** [J; (cos Bt — V1 — 26 5in Br) -

4 Jo(sinBr + V1 — 25 cos Br)],

P (T) = r; 2Vi-3% —;)25 e [——Jl Vi—2 (cos Bt -+
sin Br> + Jao (cos Br— Vi ® sin BT)] +2p(r
Vi— ’ 57 ()
I={pmecoshrar, o= {p@e=sin pra,
0 0
_(1—2) ¢ Vi——ch ¢

T—o) 7o® B= T—0) 10"

For the step p = py = const

v = 1 !;ocr;s_ 2<(11162)u) (1 —e(cos v + ' T—2s sinBr)],
v (T) "°'° —i(/%~ ¢"** sin Br, 2.7
A (1) = 2 o+ (os Br — YT — 26 sin Br).

It is evident that in this case, the critical tensile
stress oyx = 0 is reached first at the cavity wall. The
relation for the parameters at the wall is written in
the form

oo 5 l:l —-1—+—5 -o% (cos Bt —Y' 1T — 20 sth)}

U, p (11— R . — .
-r:—'_ﬁc_ﬂm“ e‘(coth Y 1 — 26 sin Bt)],

2 __ P —at(
o =t cos Bt +

g .
msﬂl Bt). (2.8)
The moment of onset of the crack front tx for the
step is found from the first equation of (2.8), in which

Biy 18 denoted by £,
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e“’1 ~29% (cos E, — ]/1——2cssm§ )= 1;; 2.9

It can be seen that £, or the dimensionless time
ti4 = txc/ 1, for the step is afunction of gonly. Knowing
tx, it is possible to calculate all the required initial
conditions for the system (2.6).

The solution of the system (2.6) is very complicated
and, to all appearances, can be obtained only numeri-
cally. An approximate solution in the form of an
expansion near the initial point of the front—useful
also in the numerical solution—-can be obtained by
determining the values of the functions and their
derivatives at this point.

Differentiating the first three equations in (2.6) with
respect to t along R(t) and solving them for R', we get

syt — (1 —23) v

= o ra—m0/E

s —fYe—(1—8)
= S F ) F (=05 /B

¥ e~ —W) P /[ E—~{fi + 1)

e = (2.10)

At the initial point of the front, v and o,/E are
known; hence the three relations in (2.10), together
with the relation derived from differentiation of the
last equation in (2.6) with respect to t along the cavity
boundary (r = ry),

fro” e + i +f2 -

Col'o E ’

where ho'—fo” _ BT — v

. E (2.11)

make it possible to calculate Rx, ¥x °, frx +fox and
fiy — f2, &t the initial point (it is readily seen that
¥r** has a discontinuity on the characteristic).

We introduce the notation

- s ¢ (" +1a")e
e mw YT wm
(2.12)
=R _ S ¢ R
m=—"g, N=—F 5, e=7.
Then, for (2.10) we get
1432 1l—g¢+om
“N+z @A—o¢)Njoy
_Ntyt+o)/(t—9—z/c 2.13)
(t+m/(l—2)—z/c
It can be seen from (2.11) that
=1 — 70 (2.14)

EVQ .

At the initial point of the front (r(,t,), we have
enough relations to determine the values of all the
functions. For x, = R;/ ¢ we get the quadratic equation

st+my],
e+ H R et + Mtz
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+ (1+a)(1+:'1‘6>=04 (2.15)
{cont'd}
For z, and y, we get the expressions
Nz, —1
(2.16)

1—0)/c+ 1—
__:( O 1My ___(65')N*_

Yu zq

Repeating the differentiation of the system of
equations, we can find the following derivatives of the
unknown functions at the initial point. Differentiation
of (2.13), which is more convenient to perform with
respect to the dimensionless time t; = tc/ry yields
(where the dot denotes differentiation with respect
to tl)

z 2 —2p—Nz(l—2z)
= N1 =
smzr—a[(1 —o) N foy] _

= i—g-+om -

— SN tysd+a)/(—s)—wms/(1 —2)—2(1—3) (2,17)
AFmja/(d—20)—z ‘

where

N = —% 1zNm 4+ (1 —%)z/ 6 — Nyc,?/ ], (2.18)

and my and y, are related as follows (here we use the

conditions at the cavity wall):
g#. =—m, | z,4 Py,
2
B = —“(% + ?!*) [z,,(m*-——l)—y* %}—

', ot cob " e
- (FnE ). e
Here p’" denotes the second derivative with respect
oty

Hence the unknown functions z, and m, are defined
by the system

@z, (1 —2y) — by = aam, — by =

= — Ay, — 42, (1 —2,) + b3 (2.20)
where
11—, _ . _ 2z,
=F o0 b=alN,z, o= T=d)Jatm, '

by =5 aszy INJ (1 —0) /o + Bl

o= o[ + 2D 1],

1—0) =z (2.21)

1
BT Ty TV (A —20) — 2
[ ]

1—¢

by = 40 [Ni' -+

The solution of (2.20) has the form

2, (1 —2,)= as (bs -+ bs) + as (b1 — by) ’

(2.22)
ay (a3 - as) -+ azaq
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_ s (bs+ by) —as (by — be) (2.22)
¥ a1 {23 + aa) 1 ayas : {cont 'd)
FEquation (2.17) can be used to calculate x;. Comput-
ation of Ry and R,’, yields the expansion for ARy =
= R/ry — 1 as follows: .
ARy = 2 Aty + Ysz, (AL 4 o, Al =1t — 15, . (2.23)

An analogous expansion can be also obtained for the
rate of motion of the cavity wall:

. 1 .
Vo = Vy + Vay Aty + 5~ Vou (A2 4 ...

The notation vge and vy, employed in this expres-
sion denotes the differentiation of vy with respectto
time. The derivatives of v, are expressed by ¢,
$e"". and ¥4, which have the following form:

Py = (1—20) eroN oy, $, " = —0,2,(1 —20) [0,
9= (1—;25) ro(:f’z.) {2y —
— 2, [Yul® [+ 2 (1 —m )]} . (2.24)
Then,
vox [7x = {1 —26)(N,—z{0),
Voy [V = 1:26 {z* +
4 e w.coi’ /_f’f: 2y (1 — my)] } ) (2.25)

From (1.11) it follows that ¥*" is continuous across
the characteristic that originates at the point (rg, t).
Using the second formula in (2.24), it is readily shown
that ¥°"° (as already mentioned) has a discontinuity at
this characteristic.

§3. We will examine the simple but important case
in which the pressure at the cavity wall is given in the
form of a step function: at a certain moment (denoted
by t = 0), there develops a pressure p; which there-
after remains constant. For an elastic solution and
the determination of t, we have derived formulas (2.7)
through (2.9). The condition

P = py = const @.1)

leads to a simplification of the formulas. Thus,

NP (=3 exp(V1—2a84)
2= Fr, (490 —2) [cosk, {5/ Vi—20)sinE,]’

and since g* is a function only of Poisson's ratio o, N*
is also a function only of 0. If the condition (3.1) is
satisfied, m, = 1 and, as can be seen from (2.15) and
(2.16), x,, Zx, and y, are also functions only of o.
Hence, the initial propagation rate of the front R is
a function only of ¢ and ¢, both of which are charac-
teristics of the medium. Table 1 and the following
compilation give the results of the calculations for
various values of Poisson's ratio,
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Table 1
o | Ee l Ny ‘ £ I Ze I Ve z;(l~x.) ™e I x.
0.40 | 0.1061 | 1.1475 | 0.9033 | 0.0990 | 1.0117 | 0.0087 | 0.9037 | 0.0069
0.25 | 0.303t | 1.4027 | 0.7533 [ 0.2204 | 1.1021 | 0.0422 | 0.7621 | 0.0235
0.35 | 0.4860 | 1.7709 | 0.6236 | 0.2773 | 1.2927 | 0.4253 | 1.1727 | 0.2004
5 FealTste Fulfia Frsfesdu Fodfs Hence we get the following final expression for fl(t) :

0.40  1.0525 —0.0499 —1.6002  0.0002 ’

0.25  1.4402  —0.1230 —1.0030  0.0030 o 2aret [ 1 _ Co(l—‘t*):t

035 14989  —0.1659 —1.0102  0.0101 ) == 1T=%—°P|~ 7 |- (4.2)

In addition to the formulas derived above, we will
give several more:

_ZI.L=_;-(1+—?N*),‘ S g Dl

ToUy ToVs ToVy
fie” 1 <1 Co ) fou 1 fre”
CoVx = 2 + € Y YT coty + cov,

f1er0
VyCoC

My 4 Yu'00/ € (My + Yata/ ) [Ty (My — 1) — yuto? /02]
2(1 — 240/ ) .

fou"ro __
v'CoC

_m '~—y*co/c-!—(m*—y*co/c)[x*(m*—1)—-ugco /62] . (3.3)
- 2t + w0/ c)

Table 1 also gives the expansion coefficients for
AR;. If there were no crack formation and normal

elastic motion continued, then A7) /v,,< would be expressed
by

‘cos Bt - (6/ Vi —= 2a) sin Bt (3.4)
c0s Pty + (5) VI~ 20)sinBt,

= exp t——a(t— L)l

Computation of the expansion (3.4) near t, shows
that the presence of a crack zone tends to slow down
the rate of motion of the cavity wall, Inthe formation
of the crack front at the moment t,, the rate of motion
of the wall is continuous, but were its first derivative
experiences a discontinuity.

§4, It can be seen from the computations that the derivatives of
the function f, are very small compared to those of f 1. Hence an
approximate solution may be proposed in which the derivatives of
f, are neglected, Then, from the fourth equation in (2.6) we obtain
an equation for fy:

df:. (l)

PCO"o

+oho =4 1

For p =py = const, the solution has the form
f1(8) = pore® / E + K exp (— cot / ro) ,

where K is a constant of integration that can be expressed in terms of
the rate of propagation at the point (r(, t,), whichinour approximation
isv,= f”/ro From the second and fourth equations of (2.6), it also
follows that

with the aid of the second equation of (2.6), it is now possible to
obtain the equation of motion of the crack front

Aty = — (AR +1n (1 + AR (4.3)

This function is given in Fig. 2 (the broken curve corresponds to
x, from Table 1), Unfortunately, it is not yet possible to compare
this solution with the exact solution (2,6), but it is possible to compare
the values of the various functions at the initial point of the front. In
the first place, for the point of formation of the front itself we obtain
the expression

/[ T—a—Vi—3

Ry AT

(4.4

This expression can be used as a first approximation in the solution
of the transcendental equation (2,18). For the parameters at the
initial point we get

1 4 _ 1 <

M=t=9a"

@ o (4.5)

Table 2 gives the values of these parameters for various o, A
comparison of the values in Tables 1 and 2 confirms the applicability
of the approximate method, in particular, for media with a small
Poisson ratio. Another peculiarity of the motion of the crack front,
which can be seen from Table 1, should be noted, At the very
beginning, the crack front moves with an acceleration x; > 0, This
is also apparemt from the approximate solution, the first and second
derivatives of which have the form

?Ay) e st
"d(AR)® T T co (14 0AR)"

d (Atl) c <
(AR = ‘c}( +7 —f—cAR;))
With increasing R, the acceleration decreases, while R* tends
toward c,

Note that an analogous approximate solution may be obtained for
op:* 0, We introduce the notationd =04, /py. Then the motion of
the front is described by the equation

At1=—j;[ml+1nii:.wm)].

1—0(1+ ARy (4.8)

It canbeseenthat At; becomesooat §(1 + ARI)Z =1; hence R =
=1,V §. This expression is a factor ¥V 2 greater than that obtained in
[1]. For the derivatives d(At,/d(AR,) and dZ(Atl)/d(ARl)2 we get the
expression

d(At) o s 26 (1 ARy)
TR co[ +17e8E T T=s A 3 AR ]’

#An) o Ch 14-8(1 + AR

IAR) — { AFeampt BE—s0 +AR1)21$}
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Far the initial point of the front and certain quantities at this
point we have the expressions
= Vi=F—~(1—-20) VI—3s
(t—28) s+ VI —+) (1 —29)]

N = i < ©eafe
* A (10 co? T {420/ (1—0)*

3

£, o=arc g

. of a2 - 28 (1 -6/ (1 —8)%)
F=@ T (A ke —0F

[eems).

2 e 8
[d BEF LT w [‘ '+ 2 e
Quantity [dz(Atl)Sd(ARi)zl* becomes positive for o = 0,1, beginning
with & = 0,005, for o =0,25 beginning with & =0.0288, and foro =
= 0,35 beginning with 6 =0,05384, Thus, the presence of a certain
@ ¢4 leads to deceleration and halting of the crack fromt,

Table 2
o x Xy ‘ X ) Ne
0.1 0.9 0.00817 142
©.25 0.73 0.0366 .| 1.46
0.35 0.585 0.053 1.95
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Fig. 2

The author is indebted to 8. S. Grigoryan for his
attention to this work and for valuable discussion.

REFERENCES
1. V. P. Koryavov, "Some ideas about crack zones
and crack fronts," DAN 888R, vol. 114, no. 6, 1962.

29 June 1965 Moscow



